Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 29: Poster - Active Matter, Microswimmers and -fluidics, Statistical Physics Biosystems
DY 29.1: Poster
Dienstag, 8. März 2016, 18:15–21:00, Poster C
Stability and bifurcations in a model for active crystals — •Lukas Ophaus1,2, Alexander Chervanyov1,2, and Uwe Thiele1,2 — 1Institut für Theoretische Physik, WWU, Münster, Germany — 2Center of Nonlinear Science (CeNoS), WWU, Münster, Germany
The conserved Swift-Hohenberg equation [or Phase-Field-Crystal (PFC) model] provides a simple microscopic description of the thermodynamic transition from a fluid to a crystalline state [1,2]. The model can be combined with the Toner-Tu theory [3] for self-propelled particles to obtain a model for crystallization (swarm formation) in active systems [4]. Within the resulting active PFC model, resting and travelling crystals can be identified. The moving states migrate with a well-defined velocity while keeping their periodicity. These ordered swarms start to move at a critical value of an activity parameter.
We investigate the influence of this parameter on the linear stability of the homogeneous, fluid state. In addition, we use a one-dimensional version to explore the bifurcation structure at the onset of motion. Numerical continuation is applied to follow steady and travelling states to construct the bifurcation diagram.
[1] H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G. I. Tóth, G. Tegze and L. Gránásy, Adv. Phys. 61, 665 (2012)
[2] U. Thiele, A. J. Archer, M. J. Robbins, H. Gomez and E. Knobloch, Phys. Rev. E 87, 042915 (2013)
[3] J. Toner and Y. Tu, Phys. Rev. E 58, 4828 (1998)
[4] A. M. Menzel and H. Löwen, Phys. Rev. Lett. 110, 055702 (2013)