Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 37: Nonlinear Dynamics, Synchronization and Chaos
DY 37.1: Vortrag
Mittwoch, 9. März 2016, 10:00–10:15, H48
Synchronization patterns in hierarchical networks — •Sanjukta Krishnagopal1,2, Judith Lehnert1, and Eckehard Schöll1 — 1Institut für Theoretische Physik, TU-Berlin, Hardenbergstr 36, 10623 Berlin, Germany, — 2Birla Institute of Technology and Science - Pilani K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Sancoale, 403726 Goa, India.
We consider Stuart-Landau oscillators, a generic model for systems close to a Hopf bifurcation, coupled in a hierarchical (fractal) topology. We present an analytic study of these networks using an extension of the eigensolution concept first introduced in [1]. The resulting eigensolutions of the network are found to be cluster states, where the nodes in the network are synchronized in clusters with a constant phase shift between the clusters. For hierarchical networks in particular, we study the effect of fractal dimension, base pattern and number of iterations on network dynamics.
[1] W. Poel, A. Zakharova, E. Schöll, Phys. Rev. E 91, 022915 (2015)