Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 49: Pattern Formation (joint session DY/BP)
DY 49.12: Vortrag
Donnerstag, 10. März 2016, 12:45–13:00, H46
Coexistence of stable branched patterns in anisotropic inhomogeneous systems — Badr Kaoui1,2, Achim Guckenberger1, Alexei Krekhov1,3, Falko Ziebert1,4, and •Walter Zimmermann1 — 1Theoretische Physik, Universitaet Bayreuth, Bayreuth, Germany — 2Biomechanics and Bioengineering, Universite de Technlogie de Compiegne, Compiegne, France — 3Max-Planck-Institute for Dynamics and Self-Organization, Goettingen, Germany — 4Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Freiburg, Germany
A new class of pattern forming systems is identified and investigated: anisotropic systems that are spatially inhomogeneous along the direction perpendicular to the preferred one. By studying the generic amplitude equation and a model equation, we show that branched stripe patterns emerge, which for a given parameter set are stable within a band of different wavenumbers and different numbers of branching points (defects). Moreover, the branched patterns and unbranched ones (defect-free stripes) coexist over a finite parameter range. We propose two systems where this generic scenario can be found experimentally, surface wrinkling on elastic substrates and electroconvection in nematic liquid crystals, and relate them to the findings from the amplitude equation.
B. Kaoui, A. Guckenberger, A. Krekhov, F. Ziebert, W. Zimmermann, New J. Phys. 17, 103015 (2015); B. A. Glatz, M. Tebbe, B. Kaoui, R. Aichele, C. Kuttner, A. E. Schedl, H.-W. Schmidt, W. Zimmermann, A. Fery, Soft Matter 11, 3332 (2015)