Regensburg 2016 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
MM: Fachverband Metall- und Materialphysik
MM 26: Poster session II
MM 26.28: Poster
Dienstag, 8. März 2016, 18:30–20:30, Poster B3
Hydrogen treatment of Fe60Al40 thin films — •Jonathan Ehrler1,2, Rantej Bali1, Camilo Otalora1, Wolfgang Anwand1, Roman Böttger1, Maciej O. Liedke1, Thomas G. Woodcock3, and Kay Potzger1 — 1HZDR, Bautzner Landstrasse 400, 01328 Dresden, Germany — 2Dresden University of Technology, Helmholtzstrasse 10, 01069 Dresden, Germany — 3IFW Dresden, PO Box 270116, 01171 Dresden, Germany
The effect of H treatment on the magnetic properties and the defect concentration of Fe60Al40 films, possessing A2 and B2 structure respectively, have been investigated. The treatment was realized by H+ irradiation as well as by reactor loading. Ferromagnetic A2-Fe60Al40 films of 250 nm thickness were irradiated with protons at an energy of 17 keV and fluences of up to 1.46 E18 ions cm−2. Magneto-optical Kerr effect showed a variation of coercivity and an increase of saturation magnetization (MS) as a function of ion fluence. Positron annihilation spectroscopy (PAS) indicates an increase of the open volume defect concentration. Superparamagnetic B2-Fe60Al40 films were annealed at 423 K in 30 bar H atmosphere. PAS shows that the H-annealing process led to a decrease in the open volume defect concentration. H-treatment caused a small increase in MS from 0.013 to 0.017 µb/Fe atom, as well as a shift in the blocking temperature from 85 to 115 K respectively. While H treatment significantly modifies the magnetic properties of Fe60Al40, elastic recoil detection suggests that the hydrogen is not retained in the vacancies present in the film, suggesting that the variations may be mostly due to structural changes.