Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
O: Fachverband Oberflächenphysik
O 14: Surface Chemical Dynamics
O 14.8: Vortrag
Montag, 7. März 2016, 17:00–17:15, S053
Reaction mechanisms by direct imaging of individual intermediates stabilized by surface dissipation and entropy — •Alexander Riss1,2, Alejandro Pérez Paz3, Sebastian Wickenburg2,4, Hsin-Zon Tsai2, Dimas G. de Oteyza5,6, Angel Rubio9,10,3, Felix R. Fischer4,7,8, and Michael F. Crommie2,4,8 — 1Physik-Department E20, Technische Universität München, Germany — 2Department of Physics, UC Berkeley, USA — 3Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco, CFM CSIC-UPV/EHU-MPC & DIPC, San Sebastián, Spain — 4Materials Sciences Division, LBNL, Berkeley, USA — 5Donostia International Physics Center, San Sebastián, Spain and Ikerbasque, Basque Foundation for Science, Bilbao, Spain — 6Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, San Sebastián, Spain — 7Department of Chemistry, UC Berkeley, USA — 8Kavli Energy NanoSciences Institute at the UC Berkeley and the LBNL, Berkeley, USA — 9Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany — 10CFEL, Hamburg, Germany
We have directly determined the microscopic mechanisms underlying complex bimolecular coupling and cyclization reactions of enediynes through real-space imaging of the precise bond configuration of intermediate species using noncontact atomic force microscopy (nc-AFM). Supported by extensive theoretical calculations, we reveal that the observed transient intermediates along the reaction pathway are stabilized by efficient energy dissipation to the substrate and changes in molecular entropy along the reaction pathway.