DPG Phi
Verhandlungen
Verhandlungen
DPG

Regensburg 2016 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

TT: Fachverband Tiefe Temperaturen

TT 12: Graphene: Transport
(Joint session of DS, DY, HL, MA, O and TT organized by HL)

TT 12.5: Invited Talk

Monday, March 7, 2016, 16:15–16:45, H17

Thermodynamic picture of ultrafast conduction in graphene — •Dmitry Turchinovich1, Zoltan Mics1, Klaas-Jan Tielrooij1,2, Ivan Ivanov1, Xinliang Feng1, Klaus Müllen1, and Mischa Bonn11Max Planck Institute for Polymer Research, 55128 Mainz, Germany — 2ICFO, 08860 Barcelona, Spain

Graphene has very high steady-state conductivity, which, however, does not hold in the regime of ultrafast, sub-picosecond electric fields corresponding to the terahertz (THz) frequencies. Here we show that in graphene, the electron conduction on an ultrafast timescale is determined by a simple thermodynamic balance maintained within its electronic system acting as a thermalized electron gas [1]. The energy of ultrafast electric currents passing trough graphene is near-instantaneously converted into the thermal energy of its entire charge carrier population, thereby raising the electronic temperature and reducing the chemical potential. The interplay between electron heating and cooling dynamics in graphene ultimately defines its ultrafast conductivity. We demonstrate that this simple thermodynamic picture describes very well the THz linear, nonlinear, and photo-induced conductivity of this remarkable material [1-3].

[1] Z. Mics, K.-J. Tielrooij, K. Parvez, S. A. Jensen, I. Ivanov, X. Feng, K. Müllen, M. Bonn, and D. Turchinovich, Nat. Commun. 6, 7655 (2015). [2] S. A. Jensen, Z. Mics, I. Ivanov, H. S. Varol, D. Turchinovich, F. H. L. Koppens, M. Bonn, and K. J. Tielrooij, Nano Lett. 14, 5839 (2014). [3] I. Ivanov, M. Bonn, Z. Mics, and D. Turchinovich, EPL - Europhys. Lett. 111, 67001 (2015).

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2016 > Regensburg