Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DS: Fachverband Dünne Schichten
DS 21: Thin Film Characterisation: Structure Analysis and Composition II
DS 21.3: Vortrag
Dienstag, 21. März 2017, 10:00–10:15, CHE 91
Microstructural properties of Ti2AlN MAX-Phase thin films, synthesized by multilayer PVD techniques — •Lukas Gröner, Eduart Reisacher, Eberhard Nold, Alexander Fromm, Frank Meyer, Chris Eberl, and Frank Burmeister — Fraunhofer IWM, Freiburg, Deutschland
Mn+1AXn phases belong to a group of ternary nitrides or carbides, where M denotes an early transition metal, A denotes mostly a group III or IVA element and X is either nitrogen or carbon. In recent years, an increasing number of investigations on the synthesis and characterization on crystalline Mn+1AXn phases have been published which focus on their suitability for industrial applications, e.g. as protective coatings. Due to the mixture of strong covalent MX bonds and weak ionic MA bonds, these materials often exhibit a high corrosion resistance as well as good electrical conductivity and thermal stability. However, these properties strongly depend on the material*s crystallinity. Ti2AlN MAX-phase thin films were synthetized on various substrates in a reactive sputter mode by a multilayer-deposition of AlN and Ti single layers under variation of the double layer thickness, followed by a subsequent annealing step. The synthesis results were investigated by elemental analysis and electron microscopy. The evolving microstructure with a preferential orientation in the texture was analyzed by polarized Raman spectroscopy and XRD. Besides temperature and annealing time, the double layer thickness turned out to be a key parameter to adjust the orientation and grain size.