Dresden 2017 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 13: Complex Systems
DY 13.3: Vortrag
Montag, 20. März 2017, 18:00–18:15, ZEU 147
An Equal Space: Data-driven Embedding of Complex Dynamics — •Felix Kemeth1,2, Sindre W. Haugland1,2, Yannis Kevrekidis2,3, and Katharina Krischer1 — 1Physik-Department, Nonequilibrium Chemical Physics, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany — 2Institute for Advanced Study - Technische Universität München, Lichtenbergstr. 2a, D-85748 Garching, Germany — 3The Department of Chemical and Biological Engineering - Princeton University, Princeton, NJ 08544, USA
We present a way to embed nonlinear phenomena in a meaningful and low-dimensional space. In particular we apply diffusion maps, a non-linear dimensionality reduction method, to extract useful axes from measurements or simulation data of different non-linear phenomena. Useful hereby refers to the degree of coarsening in which we want to observe our system, with this degree being specified by appropriately tuning the kernel scale in the diffusion maps approach. In addition, we demonstrate that these axes are, provided we have sufficient data, independent of the particular nature of the measurement entity. As illustrative examples, we apply our method on spatio-temporal chaotic dynamics apparent in the complex Ginzburg-Landau equation, on modulated traveling waves in the Kuramoto-Sivashinksy equation and on chimera states, states of coexisting coherence and incoherence. For the latter, we show that it is possible to extract insightful order parameters, allowing further understanding of these intricate dynamics.