Dresden 2017 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 2: Stochastic thermodynamics and information processing
DY 2.4: Vortrag
Montag, 20. März 2017, 10:30–10:45, HÜL 186
Stochastic Thermodynamics of Learning — •Sebastian Goldt and Udo Seifert — II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart
Virtually every organism gathers information about its noisy environment and builds models from that data, mostly using neural networks. Here, we use stochastic thermodynamics to analyse the efficiency of neural networks in two learning scenarios. We show that the total entropy production of the network bounds the information that the network can infer from data or learn from a teacher [1]. We introduce a learning efficiency η≤1 and discuss the conditions for optimal learning. Finally, we analyse the efficiency of the Hebbian, Perceptron and AdaTron learning algorithms, well-known from machine learning and statistical physics.
[1] S. Goldt and U. Seifert, Stochastic Thermodynamics of Learning.
PRL, in press; arxiv:1611.09428