Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 27: Posters - Statistical Physics Biological Systems
DY 27.3: Poster
Dienstag, 21. März 2017, 18:15–21:00, P3
Giant Acceleration of Diffusion for Molecular Motors — •Lukas P. Fischer, Patrick Pietzonka, and Udo Seifert — II. Institut für Theoretische Physik, Universität Stuttgart, Germany
Recent experimental studies have shown the existence of giant acceleration of diffusion for molecular motors [1]. Typically, such an effect is observed for driven continuous motion in a periodic potential [2]. The existence of giant acceleration for molecular motors gives rise to new characteristics for probing the underlying molecular mechanism. We examine the hybrid model, consisting of a bead harmonically coupled to a discretely jumping motor, under the effect of an external force [3]. We present the force-dependence of the velocity and the diffusion coefficient which is comparable to the diffusion in periodic potentials. This allows us generalize the giant diffusion to more complex models. By considering different system parameters we reveal a rich structure of the dependence of the velocity and diffusion coefficient. For very large jump rates of the motor the hybrid system can be effectively mapped to a probe particle diffusing in a periodic potential. The general behavior, however, depends crucially on the complete set of parameters.
[1] R. Hayashi et al., Phys. Rev. Lett. 114, 248101 (2015)
[2] P. Reimann et al., Phys. Rev. Lett. 87, 010602 (2001)
[3] E. Zimmermann et al., Neq J. Phys. 14, 103023 (2012)