Dresden 2017 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 57: Posters - Turbulence
DY 57.5: Poster
Donnerstag, 23. März 2017, 17:00–19:30, P1A
Forced oscillations of droplets confined to a stripe — •Martin Brinkmann and Ralf Seemann — Experimentalphysik, Universtität des Saarlands, 66123 Saarbrücken
Sessile droplets confined to a stripe of finite length display a multi-stability of static shapes above a certain critical liquid volume and stripe length [1,2]. Close to the bifurcation point the energy barrier separating an elongated filamentous morphology from a localized, droplet-like conformation can be resolved using the distance of the center of mass to the substrate as a ‘reaction’ coordinate. To study the oscillation dynamics of droplets on a stripe in response to vertical vibrations close to the bifurcation point, we propose a fluid mechanical model that is build on small amplitude oscillations around equilibrium shapes under the constraint of a fixed center of mass distance. Numerical computations of the effective mass matrix and spring constants describing the shape oscillations around these constrained equilibria as a function of their center of mass coordinate allow us to describe the temporal evolution of the droplet shape by a coupled system of non-linear equations. Numerical integrations of this low dimensional system comprising a number of ‘fast’ oscillation amplitudes and the ‘slow’ center of mass coordinate reveal a rich spectrum of dynamic phenomena, including a fluid mechanical analog to Kapizas pendulum.
[1] M. Brinkmann and R. Lipowsky, J. Appl. Phys. 92: 4296 (2002)
[2] D. Ferraro, C. Semprebon, T. Toth, E. Locatelli, M. Pierno,
G. Mistura, and M. Brinkmann Langmuir 28: 13919 (2012)