Dresden 2017 – scientific programme
Parts | Days | Selection | Search | Updates | Downloads | Help
HL: Fachverband Halbleiterphysik
HL 79: Poster: New Materials
HL 79.7: Poster
Thursday, March 23, 2017, 15:00–19:00, P2-OG3
Nanostructured water and carbon dioxide inside collapsing carbon nanotubes at high pressure — •Wenwewn Cui1, Tiago Cerqueira2,1, Silvana Botti2,3, and Miguel Marques4,3 — 1Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne Cedex, France — 2Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany — 3European Theoretical Spectroscopy Facility — 4Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany
We present simulations of the collapse under hydrostatic pressure of carbon nanotubes containing either water or carbon dioxide. We show that the molecules inside the tube alter the dynamics of the collapse process, providing either mechanical support and increasing the collapse pressure, or reducing mechanical stability. At the same time the nanotube acts as a nanoanvil, and the confinement leads to the nanostructuring of the molecules inside the collapsed tube. In this way, depending on the pressure and on the concentration of water or carbon dioxide inside the nanotube, we observe the formation of 1D molecular chains, 2D nanoribbons, and even molecular single and multi-wall nanotubes. The structure of the encapsulated molecules correlates with the mechanical response of the nanotube, opening opportunities for the development of new devices or composite materials. Our analysis is quite general and it can be extended to other molecules in carbon nanotube nanoanvils, providing a strategy to obtain a variety of nano-objects with controlled features