DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2017 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

MA: Fachverband Magnetismus

MA 62: Magnetic Imaging (Experimental Techniques)

MA 62.5: Vortrag

Freitag, 24. März 2017, 10:45–11:00, HSZ 403

Resolution enhancement of magneto-optical images using modern image processing algorithms — •Dmitry Berkov1, Natalia Gorn1, Ivan Soldatov2, and Rudolf Schäfer21General Numerics Research Lab, Moritz-von-Rohr-Str. 1A, Jena, Germany — 2IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany

A systematic study of the possibilities to suppress the noise and enhance the resolution of magneto-optical images using modern image processing methods is presented. We compare the performance of various methodical classes of processing algorithms, including regularized pseudoinverse filter, Wiener filter, Richardson-Lucy-algorithm [1,2] and fast Total Variation regularization [3,4]. In addition, we discuss experimental possibilities to obtain the point spread function of a Kerr microscope, which knowledge is still crucial for the effective resolution enhancement of this instrument, despite the existence of so-called blind deconvolution methods. Numerical test results and results obtained on magnetic films with skyrmion-like structures are shown

1. L.B. Lucy, An iterative method for the rectification of observed distributions, Astronomical J. 79 (1974) 745 2. W.H. Richardson, Bayesian-based iterative method of image restoration, J. Opt. Soc. Am. 62 (1972) 55 3. L. Rudin, S. Osher, Total variation based image restoration with free local constraints, Proc. 1st IEEE ICIP, 1 (1994) 31 4. C.R. Vogel, M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Comput. 17 (1996) 227 5. J.N. Caron, N.M. Namazi, C.J. Rollins, Noniterative blind data restoration by use of an extracted filter function, Appl. Opt. 41 (2002) 6884

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2017 > Dresden