Dresden 2017 –
            
              wissenschaftliches Programm
            
          
        
        
        
        
        
      
      
  
    
  
  MM 60: Topical session: Data driven materials design - machine learning
  Donnerstag, 23. März 2017, 12:00–13:15, BAR 205
  
    
  
  
    
      
        
          
            
              |  | 12:00 | MM 60.1 | Finding descriptors for material properties from billions of candidates via compressed sensing: accurate prediction of crystal structures and band gaps from only chemical composition — •Runhai Ouyang, Emre Ahmetcik, Luca M. Ghiringhelli, and Matthias Scheffler | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 12:15 | MM 60.2 | Representing energy landscapes by combining neural networks and the empirical valence bond method — •Sinja Klees, Ramona Ufer, Volodymyr Sergiievskyi, Eckhard Spohr, and Jörg Behler | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 12:30 | MM 60.3 | Automatic crystal-structure classification using X-ray diffraction patterns and convolutional neural networks — •Angelo Ziletti, Matthias Scheffler, and Luca M. Ghiringhelli | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 12:45 | MM 60.4 | Optimizing Materials Properties with Machine Learning Techniques: A Case Study on Hard-Magnetic Phases — •Johannes J. Möller, Georg Krugel, Wolfgang Körner, Daniel F. Urban, and Christian Elsässer | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 13:00 | MM 60.5 | A theoretical tool to predict the nature of the 4f states of Ce compounds — •Heike C. Herper, Tofiq Ahmed, John M. Wills, Igor di Marco, Inka Locht, Anna Delin, Alexander V. Balasky, and Olle Eriksson | 
        
          |  |  |