DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2017 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

TT: Fachverband Tiefe Temperaturen

TT 22: Transport: Quantum Coherence and Quantum Information Systems - Theory (jointly with MA, HL)

TT 22.2: Talk

Tuesday, March 21, 2017, 09:45–10:00, HSZ 103

Tunable, Flexible and Efficient Optimization of Control Pulses for Superconducting Qubits, part I - Theory — •Shai Machnes1,2, Elie Assémat1, David Tannor2, and Frank Wilhelm11Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany — 2Weizmann Institute of Science, 76100 Rehovot

Quantum computation places very stringent demands on gate fidelities, and experimental implementations require both the controls and the resultant dynamics to conform to hardware-specific ansatzes and constraints. Superconducting qubits present the additional requirement that pulses have simple parametrizations, so they can be further calibrated in the experiment, to compensate for uncertainties in system characterization. We present a novel, conceptually simple and easy-to-implement gradient-based optimal control algorithm, GOAT [1], which satisfies all the above requirements.

In part II we shall demonstrate the algorithm’s capabilities, by using GOAT to optimize fast high-accuracy pulses for two leading superconducting qubits architectures - Xmons and IBM’s flux-tunable couplers.

[1] S. Machnes, D.J. Tannor, F.K. Wilhelm and E. Assémat, ArXiv 1507.04261 (2015)

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2017 > Dresden