DPG Phi
Verhandlungen
Verhandlungen
DPG

Mainz 2017 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

A: Fachverband Atomphysik

A 19: Precision Measurements and Metrology: Interferometry II (with Q)

A 19.1: Talk

Tuesday, March 7, 2017, 14:30–14:45, P 104

Theoretical study of Bose-Einstein condensates in optical lattices towards large momentum transfer atom interferometers — •Jan-Niclas Siemss1, Ernst Maria Rasel2, Klemens Hammerer1, and Naceur Gaaloul21Institut für Theoretische Physik, Leibniz Universität Hannover, Germany — 2Institut für Quantenoptik, Leibniz Universität Hannover, Germany

Highly sensitive atom interferometers require the two interferometer arms to enclose a large area in spacetime.
In parallel to the implementation of large interrogation times in microgravity [1] and fountains [2], a larger spatial separation with large momentum transfer (LMT) enhances the sensitivity of atomic sensors. A promising method to realize these novel schemes is to combine Bragg pulses and Bloch oscillations in optical lattices to coherently split and recombine the atomic wave packets. However, the finite momentum width of the atomic ensemble or the damping of Bloch oscillations due to tunneling constrain the fidelity of the LMT.
We theoretically analyze the coherent acceleration of BECs in 1D optical lattices to understand and optimize pioneering experiments performed in the QUANTUS collaboration. To this end, a 1D-reduced Gross-Pitaevskii model [3] is adapted to interpret and propose realistic novel LMT schemes.
H. Müntinga et al. Phys. Rev. Lett. 110, 093602 (2013)
S. M. Dickerson et al. Phys. Rev. Lett. 111, 083001 (2013)
L. Salasnich et al. Phys. Rev. A 66, 043613 (2002)

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2017 > Mainz