Mainz 2017 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
Q: Fachverband Quantenoptik und Photonik
Q 19: Quantum Optics III
Q 19.1: Vortrag
Dienstag, 7. März 2017, 11:00–11:15, P 5
Topological invariants in one-dimensional lossy quantum walks — •Manolo Rivera1, Natalie Thau1, Carsten Robens1, Wolfgang Alt1, Janos Asbóth2, Dieter Meschede1, and Andrea Alberti1 — 1Institut für Angewandte Physik, Bonn, Germany — 2Wigner Research Centre for Physics, Budapest, Hungary
Quantum walks describe the motion of a quantum particle in discrete steps in time and space. It has been shown that quantum walks enable topologically protected edge states with two associated topological invariants [1]. Furthermore, the number of topologically protected edge states is equal to the difference of the two topological invariants (bulk-boundary correspondence principle). Recent theoretical work suggests that such topological invariants can be measured with a lossy quantum walk [2]. If we perform the split-step protocol and remove one spin species at each time step, the average position where the atom is removed is an integer equal to the sum of the two topological invariants. We here present the topological properties of the split-step protocol and our proposal to achieve the experimental realization of the lossy quantum walk using optimal coin and transport operations in order to measure the topological invariants associated to the unitary split-step quantum walk.
[1] J. K. Asbóth, H. Obuse, "Bulk-boundary correspondence for chiral symmetric quantum walks", Phys. Rev. B 88, 121406(R) (2013)
[2]J. K. Asbóth, T. Rakovszky, A. Alberti, "Detecting topological invariants via losses in chiral symmetric Floquet insulators", arXiv:1611.09670 [cond-mat.mes-hall] (2016)