Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

BP: Fachverband Biologische Physik

BP 3: Cell Adhesion and Migration, Multicellular Systems I

BP 3.12: Vortrag

Montag, 12. März 2018, 12:45–13:00, H 2013

Collective cell migration in embryogenesis follows the laws of wetting — •Bernhard Wallmeyer1, Sarah Trinschek2, Sargon Yigit1, Uwe Thiele2, and Timo Betz11Institute of Cell Biology, ZMBE, Münster, Germany — 2Institute for Theoretical Physics, Münster, Germany

Collective cell migration is a fundamental process during embryogenesis and its initial occurrence, called epiboly, is an excellent in vivo model to study the physical processes involved in collective cell movements that are key to understand organ formation, cancer invasion and wound healing. In zebrafish, epiboly starts with a cluster of cells at one pole of the spherical embryo. These cells are actively spreading in a continuous movement towards its other pole until they fully cover the yolk. Inspired by the physics of wetting we determine the contact angle between the cells and the yolk during epiboly. Similar to the case of a liquid drop on a surface one observes three interfaces that carry mechanical tension. Assuming that interfacial force balance holds during the quasi-static spreading process, we employ the physics of wetting to predict the temporal change of the contact angle. While the experimental values vary dramatically, the model allows us to rescale all measured contact angle dynamics onto a single master curve explaining the collective cell movement. Thus, we describe the fundamental and complex developmental mechanism at the onset of embryogenesis by only three main parameters: the offset tension strength α, the tension ratio δ and the rate of tension variation λ.

100% | Bildschirmansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2018 > Berlin