Berlin 2018 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
BP: Fachverband Biologische Physik
BP 36: Cell Adhesion and Migration, Multicellular Systems II
BP 36.4: Vortrag
Freitag, 16. März 2018, 10:30–10:45, H 1028
The Physics of Blastoderm Flow during Early Gastrulation of Tribolium castaneum — •Stefan Münster1,2,3, Alexander Mietke1, Akanksha Jain2, Pavel Tomancak2, and Stephan Grill1,3 — 1MPI for Physics of Complex Systems — 2MPI of Molecular Cell Biology and Genetics — 3TU Dresden
The early embryo of the red flour beetle, Tribolium castaneum, initially consists of a single-layered blastoderm covering the yolk uniformly that differentiates into an embryonic rudiment as well as extraembryonic amnion and serosa. The germband anlage forms inside the egg during gastrulation when the embryonic rudiment condenses and folds along the ventral midline; this process is accompanied by large-scale flow and expansion of the extraembryonic serosa which ultimately covers the entire surface of the egg, thus engulfing the growing embryo. The mechanical properties of these tissues and the forces governing these processes in Tribolium, as well as in other species, are poorly understood. Here, we present our findings on the dynamics of myosin in the early blastoderm of Tribolium using multiview lightsheet live imaging of transiently labeled wild type embryos. We quantitatively measure the global distribution of myosin throughout the flow phase and present a physical description that couples the contractile forces generated by myosin to the mechanical properties of the blastoderm. In particular, we describe the overall tissue as a thin, actively contractile, viscous bulk medium that exhibits friction with the vitelline membrane. This description accurately captures the large-scale deformation the tissue undergoes during the initial stages of gastrulation.