Berlin 2018 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
CPP: Fachverband Chemische Physik und Polymerphysik
CPP 5: Polymer Networks and Elastomers I
CPP 5.11: Vortrag
Montag, 12. März 2018, 12:30–12:45, PC 203
Marginally compact hyperbranched macromolecular trees — •Maxim Dolgushev — Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, Paris, France
This contribution presents our recent studies [1,2] on fractal hyperbranched trees with a Gaussian chain statistics, which are marginally compact. Marginal compactness means that in the d = 3 dimensional space the average size R of the trees follows N ∼ R3 (where N is the molecular mass of the tree), and at the same time for their surface A the relation A ∼ N holds. We show that albeit the self-contact density ρc diverges for marginally compact objects logarithmically with the molecular weight N, this issue can be overcome by introducing linear spacers. Indeed, the spacers of length S yield a log(N/S)/S1/2 behaviour, so that the strong decay with S bits rapidly the logarithmic divergence [1]. Another recipe for suppression of the self-contact density ρc is introduction of local stiffness [2].
[1] M. Dolgushev, J. P. Wittmer, A. Johner, O. Benzerara, H. Meyer, and J. Baschnagel, Soft Matter 13, 2499-2512 (2017).
[2] M. Dolgushev, A. L. Hauber, P. Pelagejcev, and J. P. Wittmer, Phys. Rev. E 96, 012501 (2017).