DPG Phi
Verhandlungen
Verhandlungen
DPG

Berlin 2018 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

DY: Fachverband Dynamik und Statistische Physik

DY 39: Wetting, Microfluidics and Confined Liquids I (joint session CPP/DY)

DY 39.4: Vortrag

Mittwoch, 14. März 2018, 10:30–10:45, C 264

Consistency condition for macro- and mesoscopic descriptions of contact line with surfactant — •Uwe Thiele1, Sarah Trinschek1, Jacco H. Snoeijer2, and Karin John31Institut für Theoretische Physik, Universität Münster, Wilhelm-Klemm-Str. 9, Münster — 2Physics of Fluids Group, Faculty of Science and Technology, University of Twente, Enschede — 3Laboratoire Interdisciplinaire de Physique, Université Grenoble-Alpes, CNRS

Consider a three-phase contact line where a liquid-gas interface meets a solid. For a simple liquid at equilibrium it is described on the macroscale by the Young-Dupré law relating the three interfacial energies to the equilibrium contact angle θe. On the mesoscale, it is modelled by a film-height-dependent wetting energy f(h). Macro- and mesoscale description are consistent if γ cosθe =γ+f(ha) where γ and ha are the liquid-gas interface energy and the thickness of the equilibrium adsorption layer, respectively.

Our contribution discusses the incorporation of insoluble surfactant. We derive the macro- and mesoscopic equilibrium models for spatially inhomogeneous states (consistent with the dynamic approach of [1,2]). Discussing the case of a static contact line with surfactant, we show that again there exists a consistency condition between macro- and mesoscopic descriptions. It imposes a particular dependence of the wetting energy on surfactant concentration. This is illustrated at a simple example. [1] U. Thiele, A. J. Archer and M. Plapp, Phys. Fluids 24, 102107 (2012). [2] U. Thiele, A. J. Archer and L. M. Pismen, Phys. Rev. Fluids 1, 083903 (2016).

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2018 > Berlin