Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 71: Poster: Noneq. Stat. Phys., Stoch. Thermo, Brownian Dyn.
DY 71.1: Poster
Donnerstag, 15. März 2018, 15:30–18:00, Poster A
Non-stationary Generalized Langevin Equation for the Crystallization Process — •Philipp Pelagejcev1, Thomas Voigtmann3,4, Hugues Meyer1,2, and Tanja Schilling1 — 1Physikalisches Institut, Albert-Ludwigs-Universität, 79104 Freiburg, Germany — 2Research Unit in Engineering Science, Université du Luxembourg, L-4364 Esch-sur-Alzette, Luxembourg — 3Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany — 4Department of Physics, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
We study crystallization from an undercooled melt in the context of non-equilibrium statistical physics. We have recently derived an equation of motion for an averaged observable over a bundle of system trajectories by means of time-dependent projection operator techniques. Here we apply this technique to the analysis of simulation trajectories.
We observed the crystallization process of an undercooled fluid of Lennard Jones particles in a Molecular Dynamics Simulation under constant temperature (where the heat bath is realised with a Nosé-Hoover thermostat). From the sampled size of the largest crystalline cluster in the system, we construct the memory kernel of the Generalized Langevin Equation. We observe significant memory effects, i.e. the process is not described well by a Markovian approximation.