DPG Phi
Verhandlungen
Verhandlungen
DPG

Freiburg 2019 – scientific programme

Sessions | Days | Selection | Search | Updates | Downloads | Help

FM: Fall Meeting

FM 83: Poster: Enabling Technologies Sources of Quantum States of Light

FM 83.13: Poster

Thursday, September 26, 2019, 16:30–18:30, Tents

Spatial-temporal correlations of the light of an ion crystal — •Stefan Richter1, Sebastian Wolf2, Andre Weber3, Yury Prokazov4, Evgeny Turbin4, Joachim von Zanthier1, and Ferdinand Schmidt-Kaler21Institut für Optik, Information und Photonik, Universität Erlangen-Nürnberg, Staudtstraße 1, 91058 Erlangen — 2QUANTUM, Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, German — 3LIN, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg — 4Photonscore GmbH, Brenneckestraße 6, 39118 Magdeburg

We measured first [1] and second order correlation functions of the light spontaneously emitted from a trapped, cold two-ion crystal for various detector positions in the temporal regime. Strikingly, the g(2)(x, τ) signal shows bunching or antibunching for different observer positions [2]. Position sensitive Micro Channel Plate detectors developed for applications in fluorescence lifetime microscopy combining a high spatial resolution with temporal resolution. By using two detectors in correlation mode, it is possible to implement intensity interferometry with the light of a two-ion crystals. The spatial modulation of g(2)(x1, x2, τ) was predicted in [3] and can now be measured by recording the corresponding two photon events for any time difference Δ T and corresponding positions x1 and x2. After the event stream is recorded, the correlations for arbitrary geometries can be reconstructed. [1] S. Wolf et al., Phys. Rev. Lett. 116, 183002 (2016) [2] S. Wolf et al., in preparation [3] C. Skornia et al., Phys. Rev. A 64, 063801 (2001)

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2019 > Freiburg