Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 37: Quantum Chaos
DY 37.1: Vortrag
Mittwoch, 3. April 2019, 15:30–15:45, H6
Resonance eigenfunctions in systems with partial escape — •Konstantin Clauß1, Eduardo Altmann2, Arnd Bäcker1,3, and Roland Ketzmerick1,3 — 1TU Dresden, Institut für Theoretische Physik, Dresden — 2School of Mathematics and Statistics, University of Sydney — 3MPI für Physik komplexer Systeme, Dresden
The phase-space distribution of chaotic resonance eigenfunctions corresponds to conditionally invariant measures of the classical system. This is well-understood if particles completely leave the system from a leaky phase-space region [1]. However, in many situations there occurs a partial escape of intensity, e.g., in optical microcavities. For such systems a similar understanding of resonance eigenfunctions is still missing and a completely new approach is required. For this we (i) find conditionally invariant measures for a given decay rate γ, and (ii) define a meaningful quantitative distance measure between phase-space densities to evaluate quantum-classical correspondence. We apply these methods to investigate the semiclassical limit and the limit of full escape.
[1] K. Clauß, M. J. Körber, A. Bäcker, and R. Ketzmerick, Phys. Rev. Lett. 121 (2018), 074101.