Regensburg 2019 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
MM: Fachverband Metall- und Materialphysik
MM 37: Topical session (Symposium MM): Big Data Analytics in Materials Science
Donnerstag, 4. April 2019, 15:00–18:45, H43
Sessions: Big Data Analytics in Materials Science III and IV
![]() |
15:00 | MM 37.1 | Topical Talk: Atomistic Machine Learning between Physics and Data — Michele Ceriotti and •Michael Willatt |
![]() |
15:30 | MM 37.2 | Atomic cluster expansion for accurate and transferable interatomic potentials — •Ralf Drautz |
![]() |
15:45 | MM 37.3 | Simultaneous and Reinforced Learning of Materials Properties from Incomplete Databases with Multi-Task SISSO — •Emre Ahmetcik, Runhai Ouyang, Christian Carbogno, Matthias Scheffler, and Luca M. Ghiringhelli |
![]() |
16:00 | MM 37.4 | Information-theoretic Feature Selection and its Applications in Materials Science — •Benjamin Regler, Matthias Scheffler, and Luca M. Ghiringhelli |
![]() |
16:15 | MM 37.5 | The speech of strangers in material science — •Juliana Schell, Peter Schaaf, Hans-Christian Hofsäss, and Doru C. Lupascu |
16:30 | 15 min. break | ||
![]() |
16:45 | MM 37.6 | Topical Talk: High-throughput with Particle Technology — •Lutz Mädler |
![]() |
17:15 | MM 37.7 | Topical Talk: Microstructure is the know-it-all - classification approaches with data mining and deep learning methods — •Frank Mücklich and Dominik Britz |
![]() |
17:45 | MM 37.8 | Electronic density-of-states fingerprints for finding similar materials — •Martin Kuban, Santiago Rigamonti, Markus Scheidgen, and Claudia Draxl |
![]() |
18:00 | MM 37.9 | Accurate Thermal Conductivities of Complex, Strongly-Anharmonic Solids — •Florian Knoop, Thomas Purcell, Marcel Hülsberg, Matthias Scheffler, and Christian Carbogno |
![]() |
18:15 | MM 37.10 | Surface Structure Search using Coarse Grained Modeling and Bayesian Linear Regression — •Lukas Hörmann, Andreas Jeindl, Alexander T. Egger, and Oliver T. Hofmann |
![]() |
18:30 | MM 37.11 | Predicting Reaction Energetics with Machine Learning — •Sina Stocker, Johannes T. Margraf, and Karsten Reuter |