Regensburg 2019 – scientific programme
Parts | Days | Selection | Search | Updates | Downloads | Help
O: Fachverband Oberflächenphysik
O 57: Frontiers of Electronic-Structure Theory: Focus on the Interface Challenge VI (joint session O/CPP/DS/TT)
O 57.5: Talk
Wednesday, April 3, 2019, 16:00–16:15, H9
Magnetic phase transitions induced by pressure and magnetic field: the case of antiferromagnetic USb2 — •Leonid Sandratskii — Max Planck Institute of Microstructure Physics, Halle, Germany
Fascinating phenomena observed under applied pressure and magnetic field are currently attracting much research attention. Recent experiments have shown that application of the pressure or magnetic field to the USb2 compound induce the transformations of the ground-state antiferromagnetic (AFM) up-down-down-up structure to, respectively, ferromagnetic (FM) or ferrimagnetic configurations. Remarkably, the magnetic critical temperature of the FM state, induced by pressure, is more than two times smaller than the Neel temperature of the ground state. We performed density-functional theory (DFT) and DFT+U studies to reveal the origin of the unusual magnetic ground-state of the system and the driving mechanisms of the phase transitions. We investigate both the magnetic anisotropy properties and the parameters of the interatomic exchange interactions. To study pressure-induced effects we carry out calculations for reduced volume and demonstrate that the AFM-FM phase transformation indeed takes place but depends crucially on the peculiar features of the magnetic anisotropy. We also explain why the magnetic field that couples directly to the magnetic moments of atoms leads to the phase transition to the ferrimagnetic state whereas the pressure that does not couple directly to magnetic moments results in the FM structure.