DPG Phi
Verhandlungen
Verhandlungen
DPG

Regensburg 2019 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

TT: Fachverband Tiefe Temperaturen

TT 46: Quantum Dots, Quantum Wires, Point Contacts

TT 46.4: Talk

Wednesday, April 3, 2019, 15:45–16:00, H22

Nonlocal heat transfer between resonators by splitting Cooper pairs — •Mattia Mantovani1, Gianluca Rastelli1, 2, Wolfgang Belzig1, and Robert Hussein11Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany — 2Zukunftskolleg, Universität Konstanz, D-78457 Konstanz, Germany

Hybrid quantum dot-superconductor and quantum dot-oscillator systems have become attractive platforms to inspect quantum coherence effects and heat transport at the nanoscale [1,2]. Here, we investigate a Cooper-pair splitter setup [3] consisting of two quantum dots, each coupled capacitively to a local oscillator. The latter can be represented either by a microwave cavity or a nanomechanical resonator. Focusing on the subgap regime, we demonstrate that cross-Andreev reflection, through which Cooper pairs are split into both dots, generates nonlocal heat transfer between the two oscillators. The proposed scheme can then act as an efficient heat-pump device. Our findings have interesting potential applications for nanomechanical systems and energy harvesting with quantum dot systems [4].

[1] P. Stadler, et al., Phys. Rev. Lett. 117, 197202 (2016).

[2] R. Hussein, et al., arXiv:1806.04569 (2018).

[3] R. Hussein, et al., Phys. Rev. B 94, 235134 (2016).

[4] B. Sothmann, et al., Nanotechnology 26, 032001 (2015).

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2019 > Regensburg