DPG Phi
Verhandlungen
Verhandlungen
DPG

Rostock 2019 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

MO: Fachverband Molekülphysik

MO 3: Ultrafast Processes in Solution

MO 3.4: Talk

Monday, March 11, 2019, 11:30–11:45, S HS 001 Biologie

Microsolvation vs. Acid Dissociation at 0.4 K: Sequence Matters — •Devendra Mani1, Ricardo Pérez de Tudela2, Raffael Schwan1, Nitish Pal1, Saskia Körning2, Harald Forbert2, Britta Redlich3, Lex van der Meer3, Gerhard Schwaab1, Dominik Marx2, and Martina Havenith11Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany. — 2Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany. — 3FELIX laboratory, Institute for Molecules and Materials, Radboud University, 6325 ED Nijmegen, The Netherlands.

Acid dissociation in the aqueous medium is of fundamental importance. In order to understand the fundamental steps of this reaction, many experimental and theoretical studies have been carried out on small HCl-H2O clusters, in the past.[1-3]

We have studied the dissociation of HCl on stepwise addition of H2O molecules, in helium droplets. Ultrabright pulsed-free electron lasers, at FELIX laboratory in Nijmegen, were used to measure the umbrella motion of the H3O+ moiety of the dissociated H3O+(H2O)3Cl cluster, in the frequency range of 1000-1700 cm−1. Our experiments along with high-level ab initio MD simulations show that the dissociation of HCl is highly specific of the sequence in which molecular aggregation takes place. Details will be presented in the talk.

References: 1. H. Forbert, et al. J. Am. Chem. Soc., 2011, 133, 4062-4072. 2. A. Gutberlet et al.,2009, 324, 1545-1548. 3. J. S. Mancini and J. M. Bowman, Phys. Chem. Chem. Phys., 2015, 17, 6222-6226.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2019 > Rostock