Rostock 2019 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
Q: Fachverband Quantenoptik und Photonik
Q 12: Quantum Gases (Bosons and Fermions) I
Q 12.5: Vortrag
Montag, 11. März 2019, 15:00–15:15, S HS 037 Informatik
Identifying Quantum Phase Transitions using Artificial Neural Networks on Experimental Data — Benno Rem1,2, •Niklas Käming1, Matthias Tarnowski1,2, Luca Asteria1, Nick Fläschner1, Christoph Becker1,3, Klaus Sengstock1,2,3, and Christof Weitenberg1,2 — 1ILP - Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany — 2The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany — 3ZOQ - Zentrum für Optische Quantentechnologien, Universität Hambur g, Luruper Chaussee 149, 22761 Hamburg, Germany
Machine learning techniques such as artificial neural networks are currently revolutionizing many technological areas and have also proven successful in quantum physics applications. Here we employ an artificial neural network and deep learning techniques to identify quantum phase transitions from single-shot experimental momentum-space density images of ultracold quantum gases and obtain results, which were not feasible with conventional methods. We map out the complete two-dimensional topological phase diagram of the Haldane model and provide an accurate characterization of the superfluid-to-Mott-insulator transition in an inhomogeneous Bose-Hubbard system. Our work points the way to unravel complex phase diagrams of general experimental systems, where the Hamiltonian and the order parameters might not be known.