DPG Phi
Verhandlungen
Verhandlungen
DPG

Bonn 2020 – scientific programme

The DPG Spring Meeting in Bonn had to be cancelled! Read more ...

Parts | Days | Selection | Search | Updates | Downloads | Help

HK: Fachverband Physik der Hadronen und Kerne

HK 47: Nuclear Astrophysics I

HK 47.3: Talk

Thursday, April 2, 2020, 14:45–15:00, J-HS B

Equation of state effects in core-collapse supernovae — •Sabrina Schäfer1,2, Hannah Yasin1, Almudena Arcones1,3, and Achim Schwenk1,2,41Institut für Kernphysik, Technische Universität Darmstadt — 2ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH — 3GSI Helmholtzzentrum für Schwerionenforschung GmbH — 4Max-Planck-Institut für Kernphysik, Heidelberg

We investigate the impact of different properties of the nuclear equation of state in core-collapse supernovae, with a focus on the proto-neutron-star contraction and its impact on the shock evolution. To this end, we introduce a range of equations of state that vary the nucleon effective mass, incompressibility, symmetry energy, and nuclear saturation point. This allows us to point to the different effects in changing these properties from the Lattimer and Swesty to the Shen et al. equations of state, the two most commonly used equations of state in simulations. In particular, we trace the contraction behavior to the effective mass, which determines the thermal nucleonic contributions to the equation of state. Larger effective masses lead to lower pressures at nuclear densities and a lower thermal index. This results in a more rapid contraction of the proto-neutron star and consequently higher neutrino energies, which aids the shock evolution to a faster explosion.

*This work was supported by the Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 279384907 - SFB 1245 and the European Research Council Grant No. 677912 EUROPIUM.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2020 > Bonn