Bonn 2020 – wissenschaftliches Programm
Die DPG-Frühjahrstagung in Bonn musste abgesagt werden! Lesen Sie mehr ...
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
T: Fachverband Teilchenphysik
T 37: Neutrino physics without accelerators IV
T 37.5: Vortrag
Dienstag, 31. März 2020, 18:00–18:15, L-2.017
Accidental background reduction using artificial neural networks in the Double Chooz experiment — •Markus Bachlechner, Christopher Wiebusch, Achim Stahl, and Philipp Soldin — III. Physikalisches Institut B, RWTH Aachen University
Double Chooz is a reactor anti-neutrino disappearance experiment, which took data from 2011 until the end of 2017. The main purpose is a precise measurement of the neutrino mixing angle θ13 with two identical liquid scintillator detectors. Neutrinos are detected via the signature of the inverse beta decay (IBD), which is characterized by a prompt signal from a positron and a delayed signal from neutron capture. A major background is the random association of uncorrelated events that pass the selection criteria individually. The current separation is done in a multivariate analysis, performed by a multi-layer perceptron. In this talk a method to improve the current reduction by deep learning techniques is presented.