DPG Phi
Verhandlungen
Verhandlungen
DPG

Bonn 2020 – wissenschaftliches Programm

Die DPG-Frühjahrstagung in Bonn musste abgesagt werden! Lesen Sie mehr ...

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

T: Fachverband Teilchenphysik

T 47: Neural networks and systematic uncertainties

T 47.8: Vortrag

Mittwoch, 1. April 2020, 18:15–18:30, H-HS IV

Reinforcement learning for sorting jets in top pair associated Higgs boson production — •Dennis Noll, Martin Erdmann, and Benjamin Fischer — III. Physikalisches Institut A, RWTH Aachen University

For physics analyses with identical final state objects, e.g. jets, the correct sorting of input objects often leads to a sizeable performance increase.

We present a new approach in which a sorting network is placed in front of a classification network. The sorting network provides a two-dimensional likelihood that is used to guide the rearrangement of particle four-momenta.

Because the optimal order is generally not known, a reinforcement learning approach is chosen, in which the sorting network is trained with end-to-end feedback from the analysis. In this way, we enable the system to autonomously find an optimal solution to the sorting problem.

Using the example of top-quark pair associated Higgs boson production, we show an improvement of the signal and background separation in comparison to conventional sorting of jets with respect to their transverse momenta.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2020 > Bonn