DPG Phi
Verhandlungen
Verhandlungen
DPG

Bonn 2020 – wissenschaftliches Programm

Die DPG-Frühjahrstagung in Bonn musste abgesagt werden! Lesen Sie mehr ...

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

T: Fachverband Teilchenphysik

T 58: Higgs: associated production

T 58.2: Vortrag

Mittwoch, 1. April 2020, 16:45–17:00, H-1.002

Application of Deep Neural Networks to Combinatorial Assignment of Jets in a ttH(bb) Analysis in CMS — •Tobias Lösche1, Lisa Benato1, Gregor Kasieczka1, Alessandro Calandri2, Mauro Donega2, Alejandro Gomez Espinosa2, Maren Meinhard2, Christina Reissel2, Daniele Ruini2, and Rainer Wallny21Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg — 2Insitute for Particle Physics and Astrophysics (IPA), ETH Zuerich

A precise determination of the interactions of the Higgs boson with other SM particles is a crucial part of the LHC physics program. When determining the top Yukawa coupling in ttH(bb) events, deep learning plays an integral role. In the single-lepton channel, multivariate approaches using deep neural networks (DNNs) achieve state-of-the-art performance in signal/background classification.

A particular challenge of this analysis is the discrimination of ttH(bb) events from the irreducible tt + bb background. Considering the combinatorial assignment of jets offers a possible means to deal with this problem and thus further improve performance. To achieve this, multiple DNN architectures were analyzed: An attention-based classifier, able to focus on the different combinations of objects in the event and a graph-based network, inferring relations between objects by learning a meaningful measure of distance between their respective nodes. The results of these analyses will be presented in this talk.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2020 > Bonn