DPG Phi
Verhandlungen
Verhandlungen
DPG

Bonn 2020 – wissenschaftliches Programm

Die DPG-Frühjahrstagung in Bonn musste abgesagt werden! Lesen Sie mehr ...

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

T: Fachverband Teilchenphysik

T 77: Axion like particles II

T 77.6: Vortrag

Donnerstag, 2. April 2020, 17:50–18:05, H-HS XV

A low-background Silicon Drift Detector system for axion research with IAXO — •Thibaut Houdy1,2 and Susanne Mertens1,21Max-Planck-Institut für Physik, Föhringer Ring 6, D-80805 München, Germany — 2Physik-Department, Technische Universität München, D-85747 Garching, Germany

The nature of dark matter is among the most challenging question of modern physics. Axions are invoked to solve the strong CP problem and are dark matter candidates. IAXO is the new generation helioscope, designed to discover solar axions by measuring x-rays induced by axion-photon conversion. The requirement for the detector to reach an extremely low background level below 10 keV is very challenging.

The TRISTAN project is developing a new detection system using silicon drift detector (SDD) for upgrading the KATRIN experiment and search for keV sterile neutrino. We propose to use this unique technology as an x-ray detector for the IAXO experiment. A first prototype detector revealed excellent spectroscopic quality, matching each IAXO requirements however the required background level remains to be demonstrated.

A dedicated test-bench is now being built to assess the detector background. This includes simulations of the external background, design of the shields, determination of the natural radioactivity of detector board and front-end electronics. In this talk, first results of measurements in the Munich shallow underground laboratory will be reported. Secondly, conceptual design studies of the final detector system, meeting the required background level, will be presented.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2020 > Bonn