Die DPG-Frühjahrstagung in Dresden musste abgesagt werden! Lesen Sie mehr ...
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
AKPIK: Arbeitskreis Physik, moderne Informationstechnologie und Künstliche Intelligenz
AKPIK 1: AKPIK Talks
AKPIK 1.2: Vortrag
Montag, 16. März 2020, 17:00–17:15, HSZ 301
Fast fitting of reflectivity data of growing thin films using neural networks — •Alessandro Greco1, Vladimir Starostin1, Christos Karapanagiotis2, Alexander Hinderhofer1, Alexander Gerlach1, Linus Pithan3, Sascha Liehr4, Frank Schreiber1, and Stefan Kowarik4 — 1Institut für Angewandte Physik, University of Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany — 2Institut für Physik, Humboldt Universität zu Berlin, Newtonstrasse 15, Berlin 12489, Germany — 3European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble 38000, France — 4Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
X-ray reflectometry is a powerful and popular scattering technique that can give valuable insight into the structure and growth behavior of thin films. This study [1] shows how a simple artificial neural network model can be used to determine the thickness, roughness and electron density of thin films of different organic semiconductors [diindenoperylene, copper(II) phthalocyanine and α-sexithiophene] on SiO2 from their reflectivity data with millisecond computation time and with minimal user input or a priori knowledge. For a large experimental data set of 372 XRR curves, it is shown that a simple fully connected model can provide good results with a mean absolute percentage error of 8–18% when compared with the results obtained by a genetic least mean squares fit using the classical Parratt formalism. Furthermore, current drawbacks and prospects for improvement are discussed.
[1] Greco et al., J. Appl. Cryst. (2019). 52, 1342–1347