Die DPG-Frühjahrstagung in Dresden musste abgesagt werden! Lesen Sie mehr ...
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
BP: Fachverband Biologische Physik
BP 8: Poster I
BP 8.3: Poster
Montag, 16. März 2020, 17:30–19:30, P2/1OG
Droplets as biochemical reactors in living cells — •Sudarshana Laha1,2, Thomas C.T. Michaels3, and Christoph A. Weber1,2 — 1Max Planck Institute for the Physics of Complex Systems,Dresden — 2Center for Systems Biology Dresden — 3Harvard University, Cambridge
Living cells use compartments(droplets) to spatially organise molecules that can undergo fuel-driven chemical reactions. Not much is known about the mechanisms underlying such spatial control of chemical reactions and how much the properties of chemical reactions are altered by the compartments relative to homogenous systems. Here, we derive a theoretical framework to study fuel driven chemical reactions in the presence of compartments.We study two state transitions like phosphorylation via hydrolysis of ATP and enzymatic reactions. For two state transitions, we find that the ratio of phosphorylated product can be regulated by droplets by two orders of magnitude relative to the homogenous state. In the case of enzymatic reactions, we show that the initial rate of product formation can be increased by more than ten fold. We further calculate analytically the optimal conditions of designing the system. Our studies exemplify the enormous potential of phase separated compartments as biochemical reactors in living cells and enhancing the effect of enzymes. Understanding the control of biochemical reactions via compartments is key to elucidate the functionality of stress granules for the cell and is also crucial for biochemical communication among synthetic cells and RNA catalysis in coacervate protocells.