Dresden 2020 – wissenschaftliches Programm
Die DPG-Frühjahrstagung in Dresden musste abgesagt werden! Lesen Sie mehr ...
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
CPP: Fachverband Chemische Physik und Polymerphysik
CPP 71: Modelling and Simulation of Soft Matter II (joint session CPP/DY)
CPP 71.1: Vortrag
Mittwoch, 18. März 2020, 15:00–15:15, ZEU 255
Machine Learning Inter-Atomic Potentials Generation Driven by Active Learning: A Case Study for Amorphous and Liquid Hafnium dioxide — •Anand Narayanan Krishnamoorthy1,2, Ganesh Sivaraman3, Matthias Baur1, Christian Holm1, Chris Benmore6, Marius Stan4, Gabor Csanyi5, and Álvaro Vázquez--Mayagoitia7 — 1Institute for Computational Physics, University of Stuttgart — 2Helmholtz Institute Muenster — 3Leadership Computing Facility, Argonne National Laboratory - USA — 4Applied Materials Division, Argonne National Laboratory, USA — 5Department of Engineering, University of Cambridge, UK — 6X-ray Science Division, Argonne National Laboratory, USA — 7Computational Science Division, Argonne National Laboratory, USA
We propose a novel active learning scheme for automatically sampling a minimum number of uncorrelated configurations for fitting the Gaussian Approximation Potential (GAP). We apply this scheme to a Hafnium dioxide (HfO2) dataset generated from a melt-quench ab initio molecular dynamics (AIMD) protocol. Our results show that the active learning scheme, with no prior knowledge of the dataset is able to extract a configuration that reaches the required energy fit tolerance. Further, molecular dynamics (MD) simulations performed using this active learned GAP model on 6144-atom systems of amorphous and liquid state elucidate the structural properties of HfO2 with near ab initio precision and quench rates (ie 1.0 K/ps) not accessible via AIMD.