DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2020 – wissenschaftliches Programm

Die DPG-Frühjahrstagung in Dresden musste abgesagt werden! Lesen Sie mehr ...

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

DS: Fachverband Dünne Schichten

DS 10: Frontiers in Electronic-Structure Theory - Focus on Electron-Phonon Interactions II (joint session O/CPP/DS/HL)

DS 10.6: Vortrag

Montag, 16. März 2020, 16:15–16:30, GER 38

Phonon-induced electronic relaxation in a strongly correlated system: the Sn/Si(111) (√3 × √3) adlayer revisited — •Peter Kratzer and Maedeh Zahedifar — Faculty of Physics, University Duisburg-Essen

The ordered adsorbate layer Sn/Si(111) (√3 × √3) with coverage of one third of a monolayer is considered as a realization of strong electronic correlation in surface physics. Our theoretical analysis shows that electron-hole pair excitations in this system can be long-lived, up to several hundred nanoseconds, since the decay into surface phonons is found to be a highly non-linear process. We combine first-principles calculations with help of a hybrid functional (HSE06) with modeling by a Mott-Hubbard Hamiltonian coupled to phononic degrees of freedom. The calculations show that the Sn/Si(111) (√3 × √3) surface is insulating and the two Sn-derived bands inside the substrate band gap can be described as the lower and upper Hubbard band in a Mott-Hubbard model with U=0.75eV. Furthermore, phonon spectra are calculated with particular emphasis on the Sn-related surface phonon modes. The calculations demonstrate that the adequate treatment of electronic correlations leads to a stiffening of the wagging mode of neighboring Sn atoms; thus, we predict that the onset of electronic correlations at low temperature should be observable in the phonon spectrum, too. The deformation potential for electron-phonon coupling is calculated for selected vibrational modes and the decay rate of an electron-hole excitation into multiple phonons is estimated, substantiating the very long lifetime of these excitations.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden