Dresden 2020 – scientific programme
The DPG Spring Meeting in Dresden had to be cancelled! Read more ...
Parts | Days | Selection | Search | Updates | Downloads | Help
DY: Fachverband Dynamik und Statistische Physik
DY 15: Condensed-matter simulations augmented by advanced statistical methodologies (joint session DY/CPP)
DY 15.4: Talk
Monday, March 16, 2020, 16:15–16:30, HÜL 186
Kernel-based machine learning for efficient molecular liquid simulations — •Christoph Scherer1, René Scheid1, Tristan Bereau1,2, and Denis Andrienko1 — 1Max-Planck-Institut für Polymerforschung, Mainz, Germany — 2University of Amsterdam, Netherlands
Most current force fields based on machine learning (ML) techniques result in high computational cost at every integration time step of an MD simulation. We describe a number of practical and computationally-efficient strategies to parametrize force fields for molecular liquids with kernel-based ML. We employ a particle decomposition ansatz to two- and three-body force fields and covariant kernels. Binning techniques allow to incorporate significantly more training data. Tabulation of the kernel predictions lead to MD simulations with the same computational cost than analytic three-body potentials. Results are presented for model molecular liquids: pairwise Lennard-Jones and three-body Stillinger-Weber systems, as well as an example from bottom-up coarse-graining of liquid water [1]. Many-body representations, decomposition, and kernel regression schemes are implemented in the open-source software package VOTCA [2].
[1] Scherer, Andrienko, PCCP, 20, 22387 (2018); [2] Rühle, Junghans, Lukyanov, Kremer, Andrienko, JCTC, 5, 3211 (2009)