DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2020 – scientific programme

The DPG Spring Meeting in Dresden had to be cancelled! Read more ...

Parts | Days | Selection | Search | Updates | Downloads | Help

DY: Fachverband Dynamik und Statistische Physik

DY 22: Active Matter II (joint session BP/CPP/DY)

DY 22.11: Talk

Tuesday, March 17, 2020, 12:45–13:00, HÜL 386

The step-wise induction of transcription drives morphological changes in aggregates of RNA polymerase IIAgnieszka Pancholi1, Roshan Prizak1, Tim Klingberg2, Weichun Zhang1, Amra Noa1, Gerd Ulrich Nienhaus1,3, Vasily Zaburdaev2, and •Lennart Hilbert11Karlsruhe Institute of Technology — 2Friedrich-Alexander University Erlangen-Nuremberg — 3University of Illinois at Urbana-Champaign

In eukaryotic cells, a main control point of transcription is the transient pausing of engaged RNA polymerase II (Pol II) just before transcript elongation. Paused Pol II forms transient polymeric aggregates that exhibit diverse morphologies. Here, we use super-resolution microscopy in embryonic zebrafish cells to show how entry into and exit from Pol II pausing determines these aggregate morphologies. Instant structured illumination microscopy (iSIM) in live embryos revealed that aggregates initially are morphology complex, round up as they grow, and unfold again when actual transcript elongation begins. Using transcription inhibitors, we confirm that Pol II pausing indeed drives aggregate rounding. Further resolving aggregates by STimulated Emission Double Depletion (STEDD) microscopy, we found a granular fine-structure that suggests clustering aggregation rather than liquid-liquid compartmentalization. We currently develop a theoretical model to explain what underlying macro-molecular interactions could result in the observed morphologies.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden