Dresden 2020 – wissenschaftliches Programm
Die DPG-Frühjahrstagung in Dresden musste abgesagt werden! Lesen Sie mehr ...
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 28: Pattern Formation and Reaction-Diffusion Systems
DY 28.4: Vortrag
Dienstag, 17. März 2020, 10:45–11:00, ZEU 147
Nonlinear patterns shaping the domain on which they live — •Mirko Ruppert and Walter Zimmermann — Universität Bayreuth, Bayreuth, Deutschland
Nonlinear stripe patterns in two spatial dimensions break the rotational symmetry and generically show a preferred orientation near domain boundaries, as described by the famous Newell-Whitehead-Segel (NWS) equation. We first demonstrate that, as a consequence, stripes favour rectangular over quadratic domains. We then investigate the effects of patterns "living" in deformable domains by introducing a model coupling a generalized Swift-Hohenberg model to a generic phase field model describing the domain boundaries. If either the control parameter inside the domain (and therefore the pattern amplitude) or the coupling strength ("anchoring energy" at the boundary) are increased, the stripe pattern self-organizes the domain on which it "lives" into anisotropic shapes. For smooth phase field variations at the domain boundaries, we simultaneously find a selection of the domain shape and the wave number of the stripe pattern. This selection shows further interesting dynamical behavior for rather steep variations of the phase field across the domain boundaries. The here-discovered feedback between the anisotropy of a pattern and its orientation at boundaries is relevant e.g. for shaken drops or biological pattern formation during development.