Dresden 2020 – wissenschaftliches Programm
Die DPG-Frühjahrstagung in Dresden musste abgesagt werden! Lesen Sie mehr ...
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 31: Many-body Systems: Equilibration, Chaos and Localization II (joint session DY/TT)
DY 31.3: Vortrag
Mittwoch, 18. März 2020, 10:00–10:15, HÜL 186
Emergent localization in euclidean random matrices without small parameter — •Anton Kutlin and Ivan Khaymovich — Max Planck Institute for the Physics of Complex Systems, D-01187 Dresden, Germany
We study the wave functions localization properties for the isotropic euclidean random matrix (ERM) model in arbitrary dimension. Due to its generality, this model arises naturally in various physical contexts such as studies of vibrational modes [1,2], artificial atomic systems [3,4], liquids and glasses [5-7], ultracold gases and photon localization phenomena [8,9]. We generalize the known[10,11] renormalization group (RG) approach, formulate universal sufficient conditions for localization in ERM models and inspect a striking duality of the wave function spatial structure between ERMs and translation-invariant (TI) models with a diagonal disorder[12]. Finally, we discuss possible extensions of the approach to anisotropic models.
[1] B. Ash et al., PRE 98, 042134 (2018) [2] A. Amir et al., PRX 3, 021017 (2013) [3] A. de Paz et al., PRL 111, 185305 (2013) [4] P. I. Karpov et al., PRE 97, 062157 (2018) [6] J .Rehn et al., Phil. Trans. R. Soc. A 374: 20160093 (2016) [7] J. Rehn et al., PRB 92, 085144 (2015) [8] T. Scholak et al., PRA 90, 063415 (2014) [9] A. Gero et al., PRA 88, 023839 (2013) [10] A. L. Burin et al., Pis’ma Zh. Eksp. Teor. Piz. 50, No. 6, 304-306 (1989). [11] L. S. Levitov, PRL 64, 547 (1990). [12] X. Deng et al., PRL 120, 110602 (2018).