DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2020 – wissenschaftliches Programm

Die DPG-Frühjahrstagung in Dresden musste abgesagt werden! Lesen Sie mehr ...

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

DY: Fachverband Dynamik und Statistische Physik

DY 33: Granular Matter and Granular Dynamics I

DY 33.7: Vortrag

Mittwoch, 18. März 2020, 11:15–11:30, ZEU 118

Using machine learning to identify variables of a granular theory — •Ansgar Kühn and Matthias Schröter — Max-Planck Institute for Dynamics and Self-organization (MPIDS), Göttingen, Germany

The prediction of contact numbers in granular packings using the local package fraction is described by a theory from [1]. In order to find higher order corrections to that theory, a more detailed descriptions of the local geometry is given by the Minkowski tensors of the Voronoi cell. With this data, machine learning provides a more accurate prediction of contact numbers than [1]. Thus, it can be used to identify new variables relevant for the prediction in order to expand the theory.

[1] Song, C., Wang, P., & Makse, H. A. (2008). Nature, 453, 629.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden