Dresden 2020 – wissenschaftliches Programm
Die DPG-Frühjahrstagung in Dresden musste abgesagt werden! Lesen Sie mehr ...
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 48: Statistical Physics far from Thermal Equilibrium
DY 48.3: Vortrag
Donnerstag, 19. März 2020, 10:00–10:15, ZEU 147
Thermodynamic Uncertainty Relation for the Kardar-Parisi-Zhang Equation — •Oliver Niggemann and Udo Seifert — II. Institut für Theoretische Physik, Universität Stuttgart
Recently, we have proposed a field-theoretic thermodynamic uncertainty relation for a generic field theory [arXiv: 1908.05560]. In this talk, we first formulate a framework which describes quantities like current, entropy production and diffusivity in the case of a generic field theory. We will then apply this general setting to the one-dimensional Kardar-Parisi-Zhang equation, a paradigmatic example of a non-linear field-theoretic Langevin equation. In particular, we will treat the dimensionless Kardar-Parisi-Zhang equation with an effective coupling parameter measuring the strength of the non-linearity. It will be shown that a field-theoretic thermodynamic uncertainty relation holds up to second order in a perturbation expansion with respect to a small effective coupling constant. The calculations show that the field-theoretic variant of the thermodynamic uncertainty relation is not saturated for the case of the Kardar-Parisi-Zhang equation due to an excess term stemming from its non-linearity.