DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2020 – wissenschaftliches Programm

Die DPG-Frühjahrstagung in Dresden musste abgesagt werden! Lesen Sie mehr ...

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

DY: Fachverband Dynamik und Statistische Physik

DY 56: Poster: Glasses; Granular Matter; Brownian Motion and Anomalous Diffusion

DY 56.5: Poster

Donnerstag, 19. März 2020, 15:00–18:00, P1A

Interpreting impedance spectroscopy data by using Poisson-Nernst-Planck anomalous modelsErvin K. Lenzi1, Luiz R. Evangelista2, Leila Taghizadeh3, Daniel Pasterk3, Rafael S. Zola4, Trifce Sandev5,6,7, Clemens Heitzinger3, and •Irina Petreska71Universidade Estadual de Ponta Grossa — 2Universidade Estadual de Maringá — 3Technische Universität Wien — 4Universidade Tecnológica Federal do Paraná — 5Macedonian Academy of Sciences and Arts — 6University of Potsdam — 7Ss. Cyril and Methodius University in Skopje

The information obtained from impedance spectroscopy of electrolytic cells enables comprehension of the complex diffusion phenomena in liquid/solid interfaces. In this context, we consider two implementations of the Poisson-Nernst-Planck (PNP) anomalous models of the electrical response of electrolytic cells, one built in the frameworks of the fractional calculus and the other one being an extension of the standard PNP model presented by Barsoukov and Macdonald. Both extensions may be related to an anomalous diffusion with subdiffusive characteristics through the electrical conductivity and are able to describe the experimental data. Bayesian inversion is also applied to extract the parameter of interest in the analytical formulas of impedance, using the delayed-rejection adaptive-Metropolis algorithm (DRAM) in the context of Markov-chain Monte Carlo (MCMC) algorithms to find the posterior distributions and confidence intervals.

[1] E. K. Lenzi et al., J. Phys. Chem. B 123, 7885 (2019).

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden