DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2020 – scientific programme

The DPG Spring Meeting in Dresden had to be cancelled! Read more ...

Parts | Days | Selection | Search | Updates | Downloads | Help

HL: Fachverband Halbleiterphysik

HL 26: Focus Session: Integrated Quantum Photonics I

HL 26.3: Talk

Tuesday, March 17, 2020, 10:45–11:00, POT 51

Cavity-QED effects in dissipative resonators using coupled quasinormal modes — •Sebastian Franke1, Stephen Hughes2, Juanjuan Ren2, Andreas Knorr1, and Marten Richter11Technische Universität Berlin, Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Hardenbergstraße 36, 10623 Berlin, Germany — 2Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, Ontario, Canada K7L 3N6

Open cavity systems are of high interest in quantum optics and plasmonics and offer a variety of applications, including lasing/spasing and non-classical light generation. In many cavity-QED platforms, photons are usually described by lossless normal modes, e.g., in the Jaynes-Cummings model. However, for metallic or open cavities, the so-called quasinormal modes [1] (QNMs) with complex eigenfrequencies are more appropriate, and are the natural modes to quantize.

Using a recent developed quantization scheme [2] for three-dimensional open resonators on the basis of these QNMs, we explore the multi-photon regime in a plasmonic-photonic crystal cavity coupled to a two-level atom. On the basis of a generalized input-output theory for QNMs [3], we derive quantum correlations of the output fields using the QNM Lindblad master equation and compare the results to the phenomenological dissipative Jaynes-Cummings models.

[1] P. T. Leung et al.Phys. Rev. A 49, 3057, 1994

[2] S. Franke et al.Phys. Rev. Lett. 122, 213901, 2019

[3] S. Hughes et al.ACS Photonics 6, 8, 2168-2180, 2019

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden