DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2020 – scientific programme

The DPG Spring Meeting in Dresden had to be cancelled! Read more ...

Parts | Days | Selection | Search | Updates | Downloads | Help

HL: Fachverband Halbleiterphysik

HL 6: Heterostructures, interfaces and surfaces (joint session HL/O)

HL 6.11: Talk

Monday, March 16, 2020, 12:45–13:00, POT 151

Stability and Tunneling Transport Properties of NiSi2-Si Interfaces — •Florian Fuchs1,2,3,4, Sibylle Gemming2,3, and Jörg Schuster1,2,3,41Fraunhofer Institute for Electronic Nano Systems (ENAS), Chemnitz, Germany — 2Chemnitz University of Technology, Chemnitz, Germany — 3Center for Advancing Electronics Dresden (cfaed), Dresden, Germany — 4Forschungsfabrik Mikroelektronik, Berlin, Germany

Metal-semiconductor interfaces are of huge importance for applications and are considered for various modern device architectures. We study the interface between NiSi2 and silicon on the basis of density functional theory. Different crystal orientations and strain states are investigated systematically. The energetically most favorable interface orientation is worked out, which can explain recent experimental observations [1]. Using atomistic quantum transport simulation, the tunneling transport through the interface is calculated [2]. The transport is related to underlying properties including the Schottky barrier height and the effective mass. This is done on the basis of the Wentzel-Kramers-Brillouin approximation, which can describe the tunneling transport reasonably well. Finally, the Schottky barrier height and its strain dependence is discussed in the context of the metal-induced gap states model.  

[1] Khan et al., Appl. Sci. 9, 3462 (2019)

[2] Fuchs et al., J. Phys.: Condens. Matter 31, 355002 (2019)

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden