Dresden 2020 – scientific programme
The DPG Spring Meeting in Dresden had to be cancelled! Read more ...
Parts | Days | Selection | Search | Updates | Downloads | Help
HL: Fachverband Halbleiterphysik
HL 67: Frontiers in Electronic-Structure Theory - Focus on Electron-Phonon Interactions V (joint session O/CPP/DS/HL)
HL 67.2: Talk
Thursday, March 19, 2020, 15:30–15:45, GER 38
Self-Interaction Corrected SCAN for Solids: All-Electron Implementation with Numeric Atom-Centered Basis Functions — •Sheng Bi1, Igor Ying Zhang2, Christian Carbogno1, and Matthias Scheffler1 — 1Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany — 2Fudan University, Shanghai, China
For all semi-local density-functional approximations (DFAs), electronic self-interaction errors lead to an erroneous description of charge-transfer processes, a systematic underestimation of band gaps in semiconductors, and incorrect total energies [1]. These errors can be alleviated via localized-orbital scaling corrections [2] or via self-interaction corrections (SIC) [3]. In this work, we have implemented a reciprocal-space formulation of self-consistent SIC in the all-electron, numeric atomic-orbitals code FHI-aims, which is applicable for all semi-local DFAs, including the promising meta-GGA “strongly constrained and appropriately normed” (SCAN) functional [4]. We validate our implementation by inspecting charge transfer, cohesive energies, and band gaps for a test set of molecules and solids, showing that SIC considerably improves SCAN calculations and yields results on par with standard GW calculations at a fraction of the computational cost. This allows us to use SCAN-SIC for studying the adsorption of organic molecules on the H-Si(111) surface.
[1] A. J. Cohen et al., Chem. Rev. 112, 289 (2011).
[2] N. Q. Su et al., Proc. Natl. Acad. Sci. 115, 9678 (2018).
[3] Z. Yan et al., Phys. Rev. A 95, 052505 (2017).
[4] J. Sun et al., Phys. Rev. Lett. 115, 036402 (2015).