Dresden 2020 – wissenschaftliches Programm
Die DPG-Frühjahrstagung in Dresden musste abgesagt werden! Lesen Sie mehr ...
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
HL: Fachverband Halbleiterphysik
HL 81: Semiconductor lasers II
HL 81.1: Hauptvortrag
Freitag, 20. März 2020, 09:30–10:00, POT 81
Ultrafast Spin-Lasers — Markus Lindemann1, Natalie Jung1, Tobias Pusch2, Gaofeng Xu3, Pascal Stadler1, Igor Zutic3, Rainer Michalzik2, Martin R. Hofmann1, and •Nils C. Gerhardt1 — 1Photonics and Terahertz Technology, Ruhr-University Bochum, 44780 Bochum, Germany — 2Institute of Functional Nanosystems, Ulm University, 89081 Ulm, Germany — 3Department of Physics, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
Current-driven intensity modulated semiconductor lasers are key devices for optical transmitters in short-distance data transmission, but their modulation bandwidth is usually limited to values below 50 GHz. By exploiting the coupling between carrier spin and light polarization in semiconductor spin-lasers, the modulation frequencies in such lasers can be increased to values above 200 GHz [1]. These high frequencies are achievable by increasing the resonance frequency of the coupled spin-photon system using strong birefringence in the laser cavity. Birefringent spin-lasers are capable to provide polarization modulation bandwidths and digital data transmission rates of more than 240 GHz and 240 Gbit/s respectively [1]. In contrast to intensity modulation in conventional lasers, polarization modulation in spin-lasers is largely independent of the pumping level. This makes spin-lasers perfect candidates for future ultrafast communication systems with extraordinarily low power consumption.
[1] M. Lindemann et al., Nature 568, 212 (2019).