Dresden 2020 – scientific programme
The DPG Spring Meeting in Dresden had to be cancelled! Read more ...
Parts | Days | Selection | Search | Updates | Downloads | Help
HL: Fachverband Halbleiterphysik
HL 81: Semiconductor lasers II
HL 81.2: Talk
Friday, March 20, 2020, 10:00–10:15, POT 81
Fabrication of spectrally homogeneous microlaser arrays as a nanophotonic hardware for reservoir computing — •Tobias Heuser1, Jan Grosse1, Daniel Brunner2, and Stephan Reitzenstein1 — 1Institut für Festkörperphysik, Technische Universiät Berlin, D-10623 Berlin, Germany — 2FEMTO-ST, 15B Avenue des Montboucons, 25030 Besançon, France
Reservoir computing is a powerful machine learning concept for a new kind of neural inspired data processing. In this concept an interacting network of nodes is evaluated by a trained readout for applications like fast pattern recognition. To further improve the performance of this concept, a photonic hardware implementation is of particular interest. Here, we report on our newest developements in the fabrication process, lasing performance and polarisation characteristics of large 2D arrays of microlasers, specifically quantum dot micropillars [1]. These arrays will serve as a nonlinear network via diffractive optical coupling [2]. For this spectral alignment of the involved lasers is crucial. To achieve this with a spectral homogeneity better than 200µeV throughout the array of up to 900 lasers, shifts of the emission energy are compensated by precisely adjusting the radius of the fabricated micropillars based on the local sample emission[3, 4].